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Feynman path-integral for the damped Caldirola-Kanai action
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We propose a local Feynman path-integral representation for the damped Caldirola-Kanai action.
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An interesting problem in dissipative qguantum mechanics'dissipative anomaly” is a consequence of the appearence
[1,2] is to find a local Feynman path integral for the classicalof the discretized Caldirola-Kanai term in the expression of
system of a free eletron in a medium with a frictional dragthis purely quantum object in the Feynman path integral
proportional to velocity. In this paper we propose a formal(propagator prefactopr

path integral to the phenomenological Caldirola-Kanai action . m 112

by following the original heuristic Feynman proced(i2g to A(tes1,t) = exps (aty 1+ btk)[-—} )
quantize classical systems by means of a suitable sum over 2 2mif(ter 1~

paths. (4)

Let us start our analysis by considering the localas a consequence of Eq&2)—(4), we can write the Green
Caldirola-Kanai classical actiofil] of a one-dimensional function for arbitrary different times as a Feynman path in-
free eletron of mass moving on a medium with a frictional tegral, as done originally in the first article of RE2],
drag proportional to its velocity and with a positive viscosity _

(temperature-dependertoefficient v: G((x,1);5(x",t"))
t L N-1 N1 v
L,,(X(a');ﬁ(((r))zJ't,daexp(va')(zm.xz(a)). (1) :J[T\wf (|<1:[1 dxk) exp) kgo a t'+T(k+ 1)

In order to write a Feynman path-integral representation
for the Feynman quantum-mechanical propagator associated +b
to the Lagrangian Eq1), we follow Feynman by postulating

t t—t’ k) N-1 ( m )1/2
,+_ ~ -7 /. 1 <
N k=0 \ 2mifi(te1—1ty)

the asymptotic Green function connecting the wave functions i Nlh v
for infinitesimally different timest,,;—t,=e=(t—t")/N Xexp + 2 —eexp{—(at“ﬁbtk)}
N— oo 0 fL k=0 2 2
o0 - ><(Xk+1—Xk)2 .
l//(xk+1;tk+1):Jl dxe G((Xier 15tk 1)5 (X, L)) (X tio), &2 : ®
2

Now we can formally define the limit in Ed5) as a well-

where the asymptotic Green function used to define thélefined Feynman measure over paths multiplied by a general
short-time propagation is determined by the classical actiorff@amping anomaly factor ekg4(t—t')(a—b)], namely,
Eq. (1), with suitable prefactors: M-t @-DDF (x( )

N—1 m N/2
d _—
(l<1;[1 Xk)(Zwiﬁe(v,t,t’))
(6)

Note that the infinitesimal step in the factorized Feynman
] : (3 measure, Eq6), is explicitly given by the expression below
and is independent of our original weighted time interval
partition rule used for the dissipative term ex)(in the
Caldirola-Kanai action:

G((Xkt1tr 1) (Xt )eo
= lim ev/4{t—t’)(a—b).

N—s o0

i1
~Altg+1 ,tk)eXF{ 7 5 Mmexfd (@t +bt]

(Xks1—Xk)?

62

Note that in order to analyze anomalous prefactors in th

Feynman path integral for dissipative systef@§ we have

introduced in the Eq(1) the weighted rula+b=1 in order  __ " (t—t") v

to discretize the Caldirola-Kanai damping term etp( e(v,t,t')= eexp{ —s(t+t)|= exp{ — = (t+t")
. . 2 N 2

From Eq.(2) for e—0, we can determine the prefactor in

Eq. (3) as originally done by Feynman in his heuristic de- @)

scription of the Feynman measure for time-independenThe above written results are a simple consequence of the

propagators. Note that the origin of the above-mentionedollowing evaluations:
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exp =
2

14

= X —

&P 2

N-1 Here
> {a[t’ +e(k+1)]+b(t’ + ek)}H

k=0 lim GO((x,t);(x",t")=8(x—x"). (12)
N-1 N—1 N-1 t—t’

> (at)+ D [ae(k+1)]+ >, (bt)
k=0 k=0 k=0

The claim above is a general consequence of(Bgde-
fining the usual Feynman product measi8k At this point,

N1 we remark that by choosing the Feynman middle point rule
+ kzo (bek) a=b=1/2 in the lattice prescription for the Caldirola-Kanai
path-integral propagator, we may suppress the anomaly in
v , , L (N—1) Eq. (9) (see Ref[4] for similar phenomena in Feynman path
=exp 5| (at)(N=1)+(bt')(N=1) +b(t—-t")— integrals for curved space-time
A simple solution of Eqs(11),(12) is easily obtained for
(N+1) nonzero initial timet’:
+a(t—t’) 5
GO((x,1);(x',t")
v ) (t—t") ) 1o )
=eX E(N—l)t +(a—h) 5 Amvmiert . (x—x’)zmve”t
= —— | expi————. (13
A(l—e ""1) A(l—e "71)

N a(t—t")N . b(t—t’)N}
2 2 The complete scheme-dependent propagator will, thus, be
given by the result

. €S))

=exp[§(a—b)(t—t') exr{g(t—kt’)N
BO(x ;X 7)) =8 DIGO(x,t); (X)),

By substituting Eq.(8) into Eq. (5) we get our above- (14

displayed Eq(6). . . L

The propagator, Ed5), has, thus, the dissipative anomaly Itis worth p°'”“r_‘9 o~u:0t)hat foa—’b7 1/22’ we have that the
found in the second article of Reff2] factored out by an duantum probal_:)!llt)_*G ((x,1);(x",t )| does not decay to
overall anomaly factor whose exact value depends on th&ero at the equilibrium limit— .

rule used to discretize, in E(L), the term expft) and of the Itis important to note that the presence of time-dependent
initial and final time propagation. For the weighted rule it POtentials does not modify the above-displayed path-integral
yields the result representation
G((x,1);(x",t")) G((x,);(x",t))
:evm‘t')(a‘b)f =e”’4(“")(a‘b)J DF(X(U))eXDI—
X(t)=x"ix(t)=x X(t')=x":x(t)=x h
i [t 1. oo
XDF(X(U))exng doe”” mez(a') . 9) Xft,doe {zm¥X(a)=V[x(0),c]}. (15
t/

Note that our main result, Eqé)—(9), differs somewhat L€t us exemplify Eq(14) by applying it to the case of the
from the similar one, Eq(2.16) of the second article of Ref. €Xistence of a constant magnetic field perpendicular to the
[2]. Another point to stress is the similarity between the ex-Plane containing the particle trajectory]
istence of a dissipative anomaly in the formal path integral
Eqg. (9) and the famous De-Witt anomaly in the curved
space-time propagator. Let us point out the usefulness of our
proposed path integral Eq9) with the viscosity anomaly
effects factored out by calling attention to the fact that theHere, the particle vector position is
combined Green function

A(x,y)z — i+

1 -
—Hx)j. (16

iy
2T S

L r=xi+y(t)]. (17
GO((x,1);(x,t"))=e MMI=E=OG (x,1);(x',t')]
(10 In this two-dimensional case we have the following struc-

o _ ) . ture for the scheme-dependent propagator:
now satisfies the usual time dependent Sdimger equation

initial value problem fort andt’ finite times[see Eq.(7)] URIA t/)):evlz(t—t’)(a—b)G((F £):(r',t")) (18)
d 2 d? ; >N fafu " ;
in—GO(x,1);(x',t")=— t—zG(O)((X,t);(x’,t’)). with G((r.t);(r’,t)) now satisfying the Schrbnger time-

ot 2me” dx dependent problem in view of our previous results, E§s-

1y O



PRE 58

. J i rt 4!
|ﬁEG((r,t),(r )

#? 2 92 N N
- —+—|G((r,1);(r',t"))
2me”‘( ax? ay2> (F1)i(

heH

+2icm (19

vt( i_ i)G ﬁt et t’
e Yax X5y ((r,);(r',t"))
with

im G((r,1);(r" ') =82 —r").

t—t’

(20

In order to solve exactly Eq$19),(20), we perform the

following transformation to map the above written Green

function in a free Green functiof6]. Namely,
x=[p(o)cosd(a)Ju+[p(o)sind(a)]v,

—[p(o)sind(o)Ju+[p(o)cost(a)]v,

o=1f(t)—1(0), (21

with

= f(=me'p()
dt '

1

o(t)= >

eH)
—t,
mc

eH
E
mc

and under the classical damped condition

1

2 (22

|

p(t) =a Vt/2co4

eH\?

mc

> 2. (23
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The Green function, Eq$19),(20), is, thus, given explic-
itly by
G((r, 0 (1" ")
m
2@ih[o(t)—o(t')]

= @l Flutt.x.y),v(t.xy);o(t)]

p— ’ 2
o0 — ot {lu(t,x,y)—u(t’,x",y")]

+[v(t,X.y)—v(t’,X’,y’)]z}

 expr LUt Xy )t Xy it (24)

Note that in Eq{(24), we have used the fact that the Jaco-
bian of the spatial coordinates, E(R1), is unity and the
functionsu(t,x,y) anduv(t,x,y) are explicitly given by in-
verting Eqg. (21) and (22). The complex phase function
F(u,v,0) is explicitly given by

d
p(OSIN )]+ F{p(DSIN O]}

1
F(u,v,0)= —me”‘{

[u?(t,x,y)

d
+p(eod o(1) ]+ rp(t)cod 6(1)]

v2(t,x,y)+iln p(t)]]. (25)
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